Спецификация

экзаменационных материалов для проведения ТЕОРЕТИЧЕСКОЙ ЧАСТИ ПРЕДПРОФЕССИОНАЛЬНОГО ЭКЗАМЕНА

для выпускников, обучавшихся в рамках проекта «Инженерный класс в московской школе»

1. Назначение экзаменационных материалов

Материалы теоретической части предпрофессионального экзамена предназначаются для определения уровня освоения выпускниками инженерных классов знаний, умений, ключевых компетенций образовательных программ профильных предметов и элективных курсов.

2. Условия проведения теоретической части экзаменационной работы

Теоретическая часть предпрофессионального экзамена проводится в форме компьютерного тестирования.

При выполнении работы обучающиеся могут пользоваться непрограммируемым калькулятором.

3. Время выполнения теоретической части экзаменационной работы

На выполнение теоретической части экзаменационной работы отводится 60 минут.

3. Содержание и структура экзаменационной работы

Задания экзаменационной работы разработаны специалистами высших учебных заведений, участвующих в проекте «Инженерный класс в Московской школе».

В работу включены расчетные задачи с инженерно-техническим содержанием, межпредметные задания на анализ текстовой, знакосимвольной и графической информации, базирующиеся на элементах содержания курсов физики, информатики и математики базового, повышенного и высокого уровней сложности.

Вариант экзаменационной работы, представляемый каждому обучающемуся, автоматически формируется из базы проверочных заданий в соответствии с планом экзаменационной работы и состоит из 14 заданий.

4. Система оценивания отдельных заданий и работы в целом

За правильное выполнение заданий выставляется 1, 2 или 3 балла в соответствии с приведенной системой оценивания. Задание на 1 балл считается выполненным, если ответ учащегося совпал с эталоном. При оценивании заданий на 2 или 3 балла по одному баллу выставляется за каж-

дый совпавший с эталоном элемент ответа. Максимальный балл за выполнение всей работы – 20 баллов.

В Приложении 1 приведен план демонстрационного варианта экзаменационной работы.

В Приложении 2 приведен демонстрационный вариант работы.

Приложение 1 План демонстрационного варианта теоретической части экзаменационной работы

№ за- да-ния	Умения, проверяемые на основе нижеприведённого межпредметного содержания	Макс. балл
1	Проведение логических рассуждений для нахождения характеристик событий	1
2	Использование знаково-символьных моделей при решении задач	1
3	Использование знаково-символьных моделей при решении задач	2
4	Проведение экстремальных оценок	3
5	Использование знаково-символьных моделей при решении задач	1
6	Преобразование модели из одной системы представления в другую	2
7	Использование явно заданной информации для проведения расчетов	3
8	Проведение расчётов параметров кинематического устройства	1
9	Анализ графической информации	2
10	Решение задач на индукционное представление информации	1
11	Использование знаково-символьных моделей при решении задач	2
12	Использование явно заданной информации для проведения расчетов	1

Демонстрационный вариант ТЕОРЕТИЧЕСКОЙ ЧАСТИ ПРЕДПРОФЕССИОНАЛЬНОГО ЭКЗАМЕНА

1	На соревнованиях беговых роботов было представлено некоторое количе-
	ство механизмов. Роботов выпускали на одну и ту же дистанцию попарно. В протоколе фиксировались разности времен финиша победителя и побежденного в каждом из забегов. Все они оказались разными: 1 сек., 2 сек., 3 сек., 4 сек., 5 сек., 6 сек. Известно, что в ходе забегов каждый робот соревновался с каждым ровно один раз. Определите число представленных на соревнованиях механизмов. Ответ:
2	Студент написал программу, в которой исполнитель Прыгун может совершать прыжки двух типов. Так, стартовав из точки A (1; 6; 3) прыжком первого типа, Прыгун попадает в точку B (1; 2; – 3), а из точки B прыжком второго типа попадает в точку C (1; 0; – 7). Найдите модуль перемещения Прыгуна , последовательно совершившего два прыжка первого типа и прыжок, противоположный прыжку второго типа. Ответ:

При изучении характера движения тел на экспериментальной установке студент получил данные по изменению координат для двух частиц, движущихся вдоль оси Ох, и записал их в таблицу:

	Время начала движения, с	Продолжитель- ность движения, с	Закон изменения координаты (время отсчитывается от начала движения первой частицы)
Первая частица	0	12	$x_1 = \log_2(13 - t)$
Вторая частица	0,5	15	$x_2 = \sqrt{2t-1} .$

Через какое время после начала движения первой частицы можно прогнозировать встречу частиц? В точке с какой координатой они должны встретиться?

	Время	Координата точки
Отрот	встречи	встречи
Ответ:		

В логистике затраты на доставку некоторого оборудования складываются из затрат на транспорт и хранение, которые определяются факторами a и b. Эти факторы могут принимать любые неотрицательные значения. Какие наименьшие затраты можно заложить на доставку оборудования по полученному заказу, если зависимость этих затрат задается формулой $2a^2 + 4b^2 - 2a + 5$? Чему при этом равно значение факторов?

	Наименьшие	Значение фактора	Значение фактора
Ответ:	затраты	транспорта	хранения
OIBCI.			

5	При испытаниях новой модели дрона массой 5 кг разработчики установи-
	ли датчик, позволяющий определять характеристики движения. В неко-
	торый момент времени при криволинейном движении дрона под действи-
	ем силы в 20 Н нормальное ускорение составило угол 30 градусов с век-
	тором силы. Какое тангенциальное ускорение было при этом зафиксиро-
	вано?
	. 2

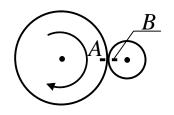
Ответ: _____м/c².

6 Играя в интерактивный квест, команда должна была открыть сейф с цифровым кодовым замком. Найдя подсказки, команда выяснила, что кодом является минимальное нечётное четырёхзначное число в девятеричной системе счисления, троичная запись которого содержит одну двойку и три значащих нуля. Команда справилась с заданием. Какое значение кода она получила? Ответ приведите в троичной и девятеричной системах счисления.

	Троичная	Девятеричная
Отрот	система	система
Ответ:		

7

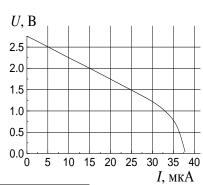
В кибернетике используется понятие информационной энтропии, которая определяется формулой $H = -\sum_i p_i \log_2 p_i$,


где H - информационная энтропия, p_i - вероятность каждого из возможных исходов.

В корзине лежат 32 клубка шерсти, из них 16 красных, 8 синих и 8 зеленых. Какова информационная энтропия сообщения о том, что случайно выбран 1 клубок? Какова вероятность того, что клубок оказался синим? Сколько бит информации несет сообщение о том, что клубок синий?

Ответ:

Информационная энтропия	Вероятность	Количество информации, бит


Две шестерни с радиусами $R_1 = 8$ см и $R_2 = 3$ см находятся в зацеплении друг с другом. Большая из них вращается с угловой скоростью $\omega_1 = 3\pi$ рад/с. В некоторый момент времени метки A и B, поставленные на шестернях совпадают. Определите минимальное время τ (в секундах), через которое метки опять совпадут.

Ответ:	C

9

На рисунке приведен график зависимости напряжения U на клеммах солнечной батареи микрокалькулятора от протекающего через источник тока I. Найдите ЭДС батареи. Какой ток I_1 (в мкА) будет протекать через резистор сопротивлением R=60 кОм, если его подключить к такой батарее?

Ответ:

ЭДС солнечной батареи, В	Ток $I_{1,}$ мк A

Поток из 100 студентов сдавал экзамены. 85 студентов сдали английский язык, 73 студента сдали немецкий язык, 10 студентов не сдали ни одного экзамена. Какое количество студентов сдало экзамены и по английскому, и по немецкому языкам?

\circ	
Ответ:	

Работая по проекту повышения КПД тепловых двигателей, студент предложил виртуальную модель, в которой в качестве рабочего тела используется кислород, совершающий замкнутый цикл. Цикл состоит из изотермического увеличения объема в 2 раза, изобарического сжатия до прежнего объема и изохорического нагревания до первоначального давления. Для расчета работы газа при расширении студент записал функцию $p = \frac{k}{V}$ и воспользовался формулой Ньютона-Лейбница. Чему равен коэффициент k? Какое значение работы (в джоулях) было получено, если первоначальные параметры 1 г кислорода (можно принять за идеальный газ) составляли 1 л и 0,2 МПа?

	Коэффициент <i>k</i>	Работа, Дж
Ответ:		

Космический зонд выведен на околоземную орбиту. Он регистрирует количество высокоэнергетических протонов в околоземном пространстве, попадающих на его датчики, путем добавления в память сумматора зарегистрированного количества протонов каждую секунду. Каждый час, начиная с 01.00, передает это количество на Землю в Центр Управления Полетом. За 1 января 2017 года ЦУП от спутника получил следующий набор данных: 20512, 20612, 20662, 20692, 20699, 20753, 20756, 20759, 20766, 20777, 20777, 20781, 20789, 20790, 20811, 20812, 20819, 20821, 20832, 20835, 20842, 20849, 20853, 20891. Сколько частиц зарегистрировал спутник за период времени с 6 утра до 6 вечера включительно 1 января 2017?

C	твет:								

Ответы на задания теоретической части предпрофессионального экзамена

№ задания	Ответ
1	4
2	10
3	5; 3
4	4,5; 0,5; 0
5	2
6	1000112; 1015
7	1,5; 0,25; 2
8	2
9	2,75; 25
10	68
11	200; 138
12	79